
A computationally efficient and scalable approach
for privacy preserving kNN classification

Sairam Ravu∗§, P. R. Neelakandan∗§, M. R. Gorai§, R. Mukkamala‡, P. K. Baruah §
§Sri Sathya Sai Institute of Higher Learning, Prashanthi Nilayam, India.

‡ Old Dominion University, Norfolk, Virginia, USA.
{ravusairam, neelaasai, mohangorai}@gmail.com, mukka@cs.odu.edu, pkbaruah@sssihl.edu.in

Abstract—In the modern age, there is a great desire to
mine users’ personal data from varied sources, to discover
their behaviours. However, due to the growing awareness
among the organizations regarding the privacy of user
data and the strict privacy regulations of government,
there is a growing resistance to share data directly with
others. Encryption is used in the literature to achieve
privacy preservation in data mining. Our technique is
based on the application of Bloom filters on the sensitive
data while still being able to perform collaborative data
mining, in particular the kNN classification. In this work,
we propose a parallel implementation on GPUs of the
most time consuming part of the algorithm, i.e., the
similarity computation of the Bloom filtered records based
on the modified Jaccard metric and the classification of
records. From our findings, we conclude that the proposed
parallel implementation, apart from being cost effective,
is highly scalable to accommodate huge data. The parallel
implementation has an average speed up of 20 over serial
implementation. Further, the speed up increases with
increase in the size of the data set considered.

Index Terms—Privacy, Data Mining, Bloomfilters, Mod-
ified Jaccard measure, kNN Classifier, GPU.

I. INTRODUCTION

The unprecedented growth in web, storage, and pro-
cessor technology has led to the increase in the number
of paper-less organizations. Today, organizations such as
banks, credit card companies, hospitals, and insurance
companies, collect and store huge amounts of informa-
tion electronically. Such big data can be useful only
if some meaningful information can be extracted out
of it. In particular, there is a desire to learn customer
behaviour so as to improve the products and services
that are offered by organizations as well as to detect any
fraudulent activities. In addition, several third parties are
also interested in mining data from multiple sources so as
to derive meaningful information about entities such as
people’s spending behaviour and the spread of diseases.

∗Student Author

Data mining has been the primary tool in discovering
the behavioural patterns of the underlying entities. Typ-
ically, organizations outsource their data mining tasks
to third-party providers. In such cases, organizations’
data needs to be shared with the data miner. This type
of sharing customer/company data with third-parties has
a potential for privacy compromise. In other words,
third-parties may know information about customers (for
example) that are otherwise considered private. The need
for privacy is often due to governmental regulations,
business ethics, and individuals’ interests.

Privacy Preserving Data Mining (PPDM) is the pro-
cess of extracting knowledge from the data without
compromising the privacy of confidential fields of the
data. Over the recent years, to address the privacy con-
cerns in data mining, researchers have introduced several
schemes for mining data without compromising privacy.
Among the many approaches that have been proposed
in the past, encryption based techniques have been the
most popular ones. Here, the sensitive attributes of the
data are encrypted at the owner site prior to sending it
to the data miner.

In this paper, we look at encrypting (or encoding)
sensitive fields of data using Bloom filters. Some efforts
in this direction, in the context of kNN classification,
was reported in [1]. Bloom filters is a space-efficient
probabilistic data structure, that is used to represent
a set with support for membership queries [2] . kNN
algorithm is a widely used method for classification in
machine learning and pattern recognition. The method,
though simple, is computation-intensive. This compu-
tational complexity arises since for each record in the
input data, its similarity measure to all the records in
the training set need to be computed. In the previous
work, modified Jaccard metric [1] was used as a distance
measure. We extend their work by parallelization of the
distance computation step. In particular, in this work,
we propose a parallel GPU-based CUDA implementation



of this algorithm. To the best of our knowledge, this
work is first of its kind. The major contribution is the
performance enhancement of the most time consuming
part of the algorithm through GPUs.

The paper is organized as follows. In section 2,
we give a brief summary of the related work. Section
3 describes the privacy preserving kNN classification
algorithm. In section 4, the proposed privacy-preserving
approach with Bloom filters implemented on GPUs is
described. Section 5 illustrates the approach with an
example. In section 6, we describe the experimental set
up and code optimizations implemented in the code.
In section 7, we discuss the results. Finally, section 8
summarizes the contributions of the paper and the scope
for future work.

II. RELATED WORK

Ever since the advent of parallel programming
paradigms, many parallel data mining algorithms have
been explored. Parallel decision tree, parallel ARM, and
parallel clustering are some of the noticeable ones. Even
parallel kNN classification algorithm has been proposed.
Garcia et al.[3] introduced a fast k-nearest neighbour
algorithm and a faster kNN algorithm was proposed in
[4]. All of them provided a faster algorithm on the basis
of the euclidean metric. In this paper we present an
approach to perform kNN classification in the context
of privacy preservation. Privacy preservation is achieved
using encoding means. We make use of Bloom filters to
perform encoding. Classification is done on the Bloom
filtered data based on the modified jaccard metric.

III. PRIVACY PRESERVING KNN CLASSIFICATION

We now briefly describe the methodology to achieve
privacy preservation in kNN classification as proposed
in [1]. Let us consider that there are m data owners
and n data users. The data owners have the capability
to perform kNN classification locally. Data users on the
other hand require data classification. For instance, the
data owners could be different recruiting organizations
that have collected behavioral information of applicants,
like qualifications, how well the applicant performs in
certain positions after recruitment and so on. Users could
be organizations that are wanting to screen their large
pool of job applicants. In order to make an effective
screening at low cost, the users intend to use the large
data maintained at the data owners.

However, due to privacy concerns, instead of origi-
nal tuples, the encoded tuples are shared. Encoding is
achieved by means of Bloom filters. Bloom filter (BF)

is a bit vector of a specified length. BF algorithm, given
a data value, computes its associated hash functions on
the data and produces Bloom filter for that value. To
enforce anonymity between the data owners and the data
users, an intermediate Semi-trusted Third Party (STTP)
is introduced. The classification on the Bloom filtered
tuples is based on modified jaccard (MJ) metric. The
MJ metric is defined as the ratio of number of equal bits
to the total number of bits.

It is reported that the single Bloom filter representation
of the entire tuple provides better classification accuracy.
For this reason, we have experimented with the single
bloom filter representation of the entire record. To cater
to the overall performance enhancement of the privacy
preservation algorithm proposed in [1], we have mod-
ified the architecture of the system. The performance
enhancement is in terms of delivering higher response
rate to the data users, who require data classification.
In the modified architecture proposed by us, the data
owner acts as a cloud based data mining service provider.
Thus data owner provides mining as a service. The data
owner makes use of GPU to provide the much needed
higher response rate. Figure 2 describes the modified
architecture for a simple scenario, consisting of a single
data owner, a single data user and a semi-trusted third
party. We claim that the modified architecture can be
extended to include more number of owners and users.
In the following section we describe the CUDA imple-
mentation to achieve the above described performance
enhancement.

Fig. 1. Modified architecture for Privacy preserving kNN Classifi-
cation

IV. IMPLEMENTATION OF PRIVACY PRESERVING

KNN CLASSIFICATION ON GPU USING CUDA

The primary goal of our proposed implementation
is to enhance the performance of kNN Classification
algorithm on Bloom filtered data. In case of Bloom fil-
tered data, classification is based on the modified jaccard
(MJ) measure. Profiling results convey that the most
time consuming part of the algorithm is the similarity



computation of the Bloom filtered records based on
the modified Jaccard metric (taking 20% of the total
execution time) and the determination of record classes
(15 % of the total execution time). We propose a CUDA
based implementation of the time consuming part on the
GPU.

The approach is described as follows. The data owner,
on receiving the Bloom filtered test records from the
STTP, applies a faster GPU based kNN classification
using the modified jaccard measure, considering the
already existing Bloom filtered data as a training set.
The steps involved in the faster similarity computation
and class deduction using GPUs form the core of our
contribution.

The following are the steps involved in achieving the
high response rate from the data owners:

• Transfer of Bloom filtered test records, Bloom fil-
tered training records and the associated class labels
of the training records from the host to GPU.

• Launching the kernel ”ComputeSimilarityMeasure”
to compute similarity measure matrix.

• Sorting the similarity measure matrix, with respect
to each test record, in the ascending order on the
GPU.

• After sorting the similarity measure matrix, the
following computations are achieved by the launch
of another kernel ”ComputeClasses”.

– Selecting the top k measures.
– Identifying the class to which a test record

belongs to based on the top k measures and
associated class labels.

In the following, we provide the details of the above
mentioned four steps.

1) Transfer of Bloom filtered records and the labels
to GPU: In order to compute the similarity measures,
the Bloom filtered records (both test and training) have
to be transfered to the GPU. Thrust library provided
by nVIDIA [5] , is used to perform this transfer. The
advantage of using the Thrust library is that it makes
common operations concise, efficient and readable.

2) Launching kernel to compute similarity measure
matrix: The inherent parallelism in the computation of
similarity measures is exploited by launching the kernel
”ComputeSimilarityMeasure” with as many threads as
the number of training records. The choice of having
number of threads as that of number of training records
is to make each thread responsible for one of the training
records. The responsibility of each thread is as follows

• Computing MJ similarity measures between one

Fig. 2. Transfer of Bloom filtered records and labels on to the GPU

training record and all the test records.
• Copy the class label of the assigned training record

in a global array.

3) Sorting the similarity measure matrix, with respect
to each test record in the ascending order: For each
of the test records, the similarity measures obtained are
considered as keys and the corresponding class labels of
the training records are considered as values. Using the
Thrust library sort by key the similarity measures with
respect to each of the test records are sorted .

4) Launching kernel to deduce classes: The kernel
”ComputeClasses” is launched with as many threads as
the number of test records. The choice of having number
of threads as that of number of test records is to make
each thread responsible for deducing label for each of
the test record.

V. ILLUSTRATION

A. Transfer of Bloom filters to GPU

As shown in the Figure 2, Bloom filters and the labels
are transfered to the GPU.

B. Launching kernel to compute similarity measure ma-
trix

In the kernel, each thread is responsible for computing
a column in the similarity matrix as shown in the
Table I. The same thread is also responsible for copying
the corresponding labels of those training records in
the the labels matrix, as shown in the Table II. For
example, thread 0 computes SimilarityMatrix[0][0] by
comparing training record 0 and test record 0, computes
SimilarityMatrix[1][0] by comparing training record 0
and test record 1 and so on. Also, thread 0 copies training
record 0’s label which is acc into all the entries in the
column 0. Similarly, all the remaining threads perform
the same procedure.



Thread-0 Thread-1 Thread-2 Thread-3 Thread-4 Thread-5
1 0.548 0.333 0.230 0.371 0.333
0.548 1 0.371 0.333 0.411 0.371
0.333 0.371 1 0.454 0.371 0.5
0.371 0.371 0.411 0.5 0.777 1

TABLE I
SIMILARITY MEASURES

Thread-0 Thread-1 Thread-2 Thread-3 Thread-4 Thread-5
acc unacc vgood good acc good
acc unacc vgood good acc good
acc unacc vgood good acc good
acc unacc vgood good acc good

TABLE II
LABELS

C. Sorting the similarity measure, with respect to each
test record in the ascending order

Now, each row in SimilarityMeasure matrix is sorted
by using Thrust library’s sort by key algorithm. So, as
shown in the Table III, all the similarity measures are
sorted in the ascending order and all the labels are moved
to their corresponding slots as that of measures (Table
IV).

D. Launching kernel to deduce classes

A kernel is launched with as many threads as that
of number of test records, in the above example, four
threads. Now, each thread finds the top k labels in each
row. For example, if k is 3, then thread 0 goes to the
end of first row, finds out that label acc has got the
highest similarities measure which is 1.548 compared
to that of unacc’s 0.371 Hence, test record 0 is labeled
acc by thread 0. Similarly, test records 1, 2 and 3 are
labeled as unacc, vgood and good by threads 1, 2 and 3
respectively.

VI. EXPERIMENTAL SETUP

The experiments were conducted on Lonestar super-
computer. Lonestar provides NVIDIAs Tesla M2070
card with 448 cores and 6 GB global memory. The
Car and the Adult data sets, available at UCI machine
learning repository (http://archive.ics.uci.edu/ml/) were
used.

Various optimizations are applied in our method to
utilize the GPU efficiently. First, we employed memory
coalescing—a technique in which threads accessing the
neighbouring and sequential addresses in a coalesced
manner. The proposed method will update the similarity

0.230 0.333 0.333 0.371 0.548 1
0.333 0.371 0.371 0.411 0.548 1
0.333 0.371 0.371 0.454 0.5 1
0.371 0.371 0.411 0.5 0.777 1

TABLE III
SIMILARITY MEASURES AFTER SORTING

good vgood good unacc acc acc
good vgood good acc acc unacc
acc unacc acc good good vgood
acc vgood unacc good good acc

TABLE IV
LABELS AFTER SORTING

matrix in a memory coalesced manner. The memory
accesses of threads in a warp are coalesced into a
single global memory transaction, rather than several
transactions. Second, we sort a structure of arrays rather
than an array of structures, since it is more efficient to
do this way.

VII. RESULTS

In order to observe the efficacy of GPU implemen-
tation, we have duplicated the original records in Car
dataset to obtain a data set of size 13640. The occu-
pancy metric is defined as the ratio of number of active
thread groups per processor to that of maximum number
of thread groups per processor. Using the occupancy
calculator provided by NVIDIA, we found that the
thread block size of 480 provides optimal occupancy
of 94%. Hence, kernel with thread block size of 480
was launched. Experiments were conducted for different
k values (k-nearest neighbour). From our investigations
(Table V), we found that an average speed up of 510
is achieved, considering only the computation time.
Further, as the Table VI shows, an average speed up
of 20 is achieved for the Car data set (considering
both the memory transfer rate to the GPU and the
computation time) with O0 compiler option. With O3
optimization an average speed up of 10 is achieved as
shown in the Figure 3. This difference can be attributed
to the compiler optimizations like loop unrolling and
vectorization on the serial code.

We also have verified the scalability of our proposed
method by experimenting on Adult data set. We found
that an average speed up of 40 can be achieved with O0
compiler optimization (Table VII) and an average speed
up of 20 with O3 optimization (Figure 4).



k=3 k=5 k=9 k=15
Serial Code 21.90 21.89 22.05 22.06
GPU 0.04 0.04 0.04 0.04
Speedup 507.80 508.07 511.63 511.86

TABLE V
EXECUTION TIME (IN SECS) AND SPEEDUPS WHEN ONLY

COMPUTATION IS TIMED FOR CAR DATA SET

k=3 k=5 k=9 k=15
Serial Code 67.03 66.83 67.01 67.31
GPU 3.25 3.25 3.25 3.25
Speedup 20.62 20.539 20.61 20.70

TABLE VI
EXECUTION TIME (IN SECS) AND SPEEDUPS OF CAR DATA SET

WHEN COMPILED WITH O0 OPTION

From our investigations, we observed that the speed
up factor increases, with the increase in data size and
that the parallel implementation always guarentees cor-
rectness.

Fig. 3. Speed up obtained using GPU with Car data set compiled
with O3 option

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a CUDA-based parallel
implementation of privacy preserving kNN classification.

Fig. 4. Speed up obtained using GPU with Adult data set when
compiled with O3 option

k=3 k=5 k=9 k=15
Serial Code 483.00 483.50 484.50 485.40
GPU 11.86 11.86 11.88 11.85
Speedup 40.71 40.75 40.75 40.93

TABLE VII
EXECUTION TIME (IN SECS) AND SPEEDUPS OF ADULT DATA SET

WHEN COMPILED WITH O0 OPTION

It is actually a hybrid implementation using the CPU
and the GPU. Bloom filters are computed on CPU,
similarity measures, sorting and identifying the labels
is done on GPU. Data elements in these two kernels
are processed in a data-parallel fashion. Optimizations
such as memory coalescing techniques are used to
reduce the number of memory write transactions onto
the GPU global memory. Experiments showed good
scalability on well known data sets. An average speedup
of 20 over serial implementation was achieved. The
results showed that our proposed method is a promising
solution for privacy preserving kNN classification. One
possible extension to this work could be to overlap the
CPU-GPU communication and the computation on the
GPU by using CUDA streams. Another could be to
scale this approach to multiple GPUs.

ACKNOWLEDGMENT

We dedicate this work to Bhagawan Sri Sathya Sai
Baba, Founder Chancellor of Sri Sathya Sai Institute
of Higher Learning. This work was partially supported
by nVIDIA, Pune, grant under Professor partnership
program and the Extreme Science and Engineering Dis-
covery Environment (XSEDE), which is supported by
National Science Foundation grant number OCI-105375.

REFERENCES

[1] M. R. Gorai et al. Employing bloom filters for privacy preserving
collaborative knn classification. World Congress on Information
and Communication Technologies(WICT), 2011.

[2] Bloom H. S. Space/time trade-offs in hash coding with allowable
errors,. Communications of the ACM, Volume 13, Issue 7, pp.
422-426, 1970.

[3] V. Garcia et al. Fast k nearest neighbour search using gpu.
IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2008.

[4] Shenshen Liang et al. Design and evaluation of a parallel k-
nearest neighbor algorithm on cuda-enabled gpu,. IEEE sympo-
sium on Web Society (IWS), 2010.

[5] Jared Hoberock and Nathan Bell. Thrust: A parallel template
library. 2010.


